皮皮读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

说实话,开创“机器学习”新领域,成为“深度学习”等技术路线的指路人,的确十分诱人,光是提出“人工神经网络”的概念,就足以名垂青史了。

但对于自己现在的水平,江寒心里还是很有数的,不谦虚地说,只能算略知一二。

前世虽然上过大学,学的却不是计算机专业,在编程和硬件领域,基本上全靠自己摸索,知识体系并不完善。

至于“人工神经网络”方面,前后只看了几本入门教材,外加在P站看了十几个系列视频教程。

一些重要的概念是清楚的,一些经典算法也是了解的,做一些简单的推演,应该也没什么大问题。

可许多公式背后的原理,当时就没能理解得十分深刻,到了现在,印象就更加模糊了。至于那些需要最先进的数学工具,才能完成的证明与推导……

在机器学习领域,“深度学习”被称作最具颠覆性的理论,以他目前掌握的这点儿皮毛,想要从无到有地开辟出一整条技术路线,难度可想而知。

可难就不搞了吗?

这是个难得的机遇,一定要好好把握才行。只是他还需要好好想一想,如何妥善运用那些“走私”来的知识。

既要充分发掘价值,也要注意合理性。起码拿出来的东西,要符合自己的人设,要找得到合理的解释,免得惹出什么不必要的麻烦……

江寒前思后想,终于做出了决定。

总之,必须尽快将“感知机”的概念抛出去,否则后续的一系列技术,全都得憋在脑袋里,没法拿出来见人。

只是这样一来,估计自己将来基本跑不掉一个“机器学习宗师”、“AI教父”、“人工神经网络创始人”之类的称号了……

别看“感知机”简单,却是“人工神经网络”的基石,很多“机器学习”算法,比如支持向量机(SVM)、深度学习、D-QLearning、生成对抗网络(GAN)……都是在其基础上才发展出来的。

在另一个世界,“感知机”的概念诞生于1957年,由Cornell航空实验室的FrankRosenblatt提出。

本质上是一个线性分类模型,用于解决二元线性分类问题,对应于输入空间中将实例划分为两类的分离超平面,是最简单的前馈人工神经网络。

好吧,说人话。

简单点说,感知机就是一个算法,通过大量训练,可以让电脑掌握某种规则,然后按照这种规则,将输入的数据分成两类。

如果输入的数据空间只有两个维度,将其视作平面直角坐标系,那么“感知机”的图像,其实就是一根直线。

“感知机”虽然简单,还是有点用的。

比如经过训练后,输入身份证号,就能帮你判断出是男是女;比如输入身高和体重,就能判断是否超重……

可能有人会问:随便写个程序,不是很简单就能实现这些功能吗?

但感知机的神奇之处,在于使用同样结构的程序,就能在很多领域里通用,而不用针对性编程。

这是机器学习和常规编程的本质区别。

感知机结构异常简单,工作原理也不复杂,但要想写成论文,也需要进行一些数学推导,以及前置理论。

“感知机”是建立在M-P模型的基础上的。

生物的神经细胞结构,主要由树突、突触、细胞体及轴突组成。单个神经细胞有两种状态:激活或者未激活。

神经细胞是否激活,取决于从其它的神经细胞收到的输入信号量,及突触的强度(抑制或加强)。

当信号量总和超过了某个阈值时,神经元就会激活,产生电脉冲,电脉冲会沿着轴突并通过突触传递到其它神经元……

M-P模型就是模拟生物神经元的工作机制,创建出来的一种数学模型,采用阈值加权和与激活函数来控制信息传导过程,是生物神经元的一种简单抽象。

如果M-p模型的相关论文尚未发表,江寒就需要自己推导,并将其容纳进自己的论文里,否则难以自圆其说。

在写论文前,必须扫清障碍,接下来江寒就开始在网上寻找论文和线索。

功夫不负有心人,江寒几经周折,终于在一个学术网站,找到了那篇讲述M-P模型的论文:《Alogicalcalculusoftheideasimmanentinnervousactivity》。

这篇论文发表也有几十年了,却没在这个世界引起多少关注,引用数更是少得可怜,不过也幸好如此,否则哪轮得到自己来引领时代风骚?

江寒重生前就看过这篇论文,但那时候并没怎么细心揣摩,只是一扫而过,现在为了写出合格的SCI论文,自然要好好琢磨了。

他找来一个只写了两、三页的日记本,边刷论文边记录要点和心得,论文里遇到的术语,如果不十分理解,还要上网寻找文献和参考资料,还要确定来源是否可靠……

时间过得很快,转眼一个小时过去。

虽然说高三寝室并不会熄灯,但室友们总要睡觉的,老李那边也不能拖延太久。江寒看看重要问题基本解决得差不多了,就将手机上交,然后匆匆洗漱、上床休息。

第二天。

江寒醒得有点早,看看时间,还差几分钟才5点,就决定去操场上跑跑步。

上辈子疏于锻炼,身体素质始终没提上来,没到30岁就处于亚健康状态了,这一世他不想重蹈覆辙。

很快洗了把脸,然后来到操场。

到了地方才发现,刚刚5点就已经有不少人来锻炼了,跑步的,压腿的,打球的,玩单双杠的……

“像我这么勤奋的人,还真不少啊!”江寒感慨了一句,活动下关节,压了几下腿,然后开始慢跑。

运动时脑子也闲不下来,学习的事情、赚钱的事情、系统的事情,“神经网络”、“感知机”、“M-P模型”……各种念头纷至沓来。

千头万绪,此起彼伏。

江寒正心不在焉跑着,忽然发现前面不远处,有个女生也在慢跑,背影很惹眼,好像有点眼熟。

不一会儿,经过那个女生身边时,他才确认自己并没有认错,果然是夏雨菲。

有个大活人在身边跑步,夏雨菲自然不可能发现不了,但并没有做出什么反应,看都不看他一眼。

“早啊!”江寒笑容爽朗。

“早。”夏雨菲淡淡回了一句,眼光都没偏一下,自顾自跑着。

江寒只是出于礼貌,才打了个招呼,没想到她会回应。

声音还挺脆,就是神情十分冷淡,有点拒人于千里之外的意思……

大概这姑娘经常被搭讪,内心已经毫无波动,说不定还很不耐烦?

江寒笑了笑,不再理会,很快超了过去。

既然人家对他没兴趣,他就不会多打扰。

重活一世,他不会舔任何人,哪怕是夏雨菲。

皮皮读书推荐阅读:权国修复师都市超级狂仙这个明星来自末世冰山总裁的贴身狂医美利坚名利双收神界红包群我的博浪人生枭少护妻超放肆孽徒住手,我可是你师父!桃源山村:我随身一个神级空间离婚了,谁还慌着成家啊神品良医他可是赵二杆子我高启盛,握全球最顶尖科研成果我的时空旅舍最牛锦衣卫都市妖孽仙尊秘境降临,从盗取神权开启成神路都市模拟人生重返1973农村日常超级女婿港片:我是大哥大透视眼,夏健的外卖逆袭人生!买断撒哈拉夜玄美综大枭雄无敌孽徒!速速下山牛笔去吧女尊:她们都是坏人神医上门狂婿主要发起人离开她以后高冷青梅变得格外黏人墨园炼狱孤行者人在书中当反派:女主眼里大善人天路杀神先生不可能那么喜欢我3000崽崽让我躺赢成首富重生之巨星复仇系统她在,想尽办法攻略我网游之魔域修罗混黑混到身边全是美女都市逆天狂少重塑千禧年代农女的盛世田园神农觉醒斩龙殿傲世无双四合院一边缘人成为邪神那些事儿穿成暴君心上的小甜包
皮皮读书搜藏榜:不完美小初恋重返都市当王者我救的大佬有点多听泉鉴宝:你这个东西很开门至尊神豪系统黑心大小姐要进宫神算狂妻:偏执墨爷,放肆宠!不良太子妃:公主萌萌哒生活在港片世界追卿入梦九日伏妖录都市最强仙帝都市:无敌奶爸,杀戮纵横柳条胡同之飞哥归来神豪从秒杀开始嫡女有喜:腹黑爹爹天才宝拐个相公来种田当偶像恋爱时最强套路主宰柯南之假酒的自我修养开局被校花强吻,她竟让我老实点开局一座动物园从明星野外生存秀开始景总天天想复婚反穿娇妻:重生哥哥,轻轻宠!亿万豪宠:总裁大人蜜爱逃妻:宝贝,叫老公乡村修仙狂徒天降系统妹妹重生甜妻慢点撩:帝少,宠上瘾回到过去,开局放了系花鸽子说好假天师,你这通天箓咋回事穿越后我被迫成了反派顾先森的闪婚贵妻觉醒中途失败召唤神兽我原地起飞落枝飞超级娱乐王朝家有庶夫套路深美人师兄人设又崩了邪王宠妻:妖孽王妃又想跑!星光时代文娱崛起重生之发家致富撩大佬隐婚蜜爱怦然星动:男神老公轻点亲科学家日记反穿现代养大佬众生共祭如影谁行飞翔在茨淮新河
皮皮读书最新小说:研制长生疫苗我的空间很刑天赐反诈系统万界乐园这天赋逼我当六边形战神蓝星红警:我的基地通万界开局让我捐骨髓?这好人我不当了穿越galgame,但是苦主试问春风可有怜花意神医下山:我被女神追着宠仙帝归来:从高三开始逆袭垃圾异能的我开始苟运起来我的代号是苍穹我在高校冲师成圣十倍返现,神级系统拿捏校花怪人横行,我制造骑士抗战之铁血孤城中年当天翻盘,认亲实权叔叔四合院:我的播音震撼全场四合院:傻柱归来,专治众禽四合院:我的戒尺专打白眼狼还写什么歌,直接进入憋笑挑战偏心父母,断亲下乡开局帝君权柄,我打造现世七执政路边捡只小狐妖,带回家做老婆万界商人,从斩神开始抗战:撼山易撼顾家军难守护!我和岳母小姨子相依为命阴婚契约无字书风云我的灰道泰玄道君:人在诸天,封神成仙激活秘境,打造世外仙园!全民转职:我统御两大天灾!你告诉我这是御兽?诡异降临,为什么都说我疯了权力巅峰,从金融民工开始进部穿成暴君后我靠PPT治国都市之路:林溪的奋斗与情感纠葛从城市孤儿到九天至尊死亡生存游戏,被我玩成肉鸽割草古代修士的现代日常重生2005:我在惠州买地皮山村诡谭录,开局打结婚报告,渣女后悔哭求原我的七个租客都是女主播18岁异能觉醒天崩开局:关于穿越到秘境这事儿千门春秋职业财神爷:谁说钱不是万能的?为官有道