皮皮读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!
皮皮读书 >  离语 >   第295章 吃饱了

1.3.2 研究方法

本文以有关电力行业 LcA 的近十年的英文文献为研究对象,并根据每篇文章的元数据构建数据

库。进行文档分割,将文件分割为更小的部分或章节,分区后使其更容易分类和提取文本,将文档

元素列表存储并跟踪从文档中提取的各种元数据,将文本元素分割为适合模型注意力窗口的大小,

构建向量数据库,方便大模型调用。利用 RAG(检索增强生成)模型,帮助大语言模型知晓具有电

力 LcA 领域专业性和时效性的知识,包括最新的新闻、公式、数据等内容,增强大模型回答关于电

力行业 LcA 领域专业性问题与时效性问题的能力,主要用到的研究方法如下。

(1)文献资料法。通过阅读大量国内外研究检索增强生成的文章,确定将 RAG 技术作为提升

大语言模型回答电力行业 LcA 领域问题专业性与时效性问题的解决方法。文献调研显示,聚焦于此

领域的大模型是一个研究空白,将电力行业 LcA 的大模型应用于企业层面的分析,能够响应了重大

战略。该方法能够提升科研眼界、开阔研究思路、丰富研究角度。

(2)实验法。本文使用爬虫程序抓取各顶级期刊官网上近十年的文章,并通过元数据处理方

法,构建文章元数据的数据库。

(3)实证分析法。本文通过大量实际数据,来验证大模型调用电力行业 LcA 领域向量数据库

回答该领域专业性问题和时效性问题的有效性。

1.3.3 系统设计

系统设计三个模块,整体设计如图 1.4 所示,分别是数据处理模块、专业领域知识库构建模块

以及 chatbot 构建模块。数据处理模块主要包括对电力 LcA 这个特定领域的英文文献进行选择和初

步处理,而后将有关数据全部转化成结构化数据。知识库构建模块主要是将数据向量化并构建向量

知识库。chatbot 构建分为功能部分和前端部分,功能包括 openAI 基座的调用、知识库检索、在

线检索;前端部分为 web 可视化以及 UI 设计。

1.4 本章小结

第一章作为本论文的引言部分,主要围绕研究背景、研究目的与意义、研究内容与方法以及系

统设计进行了全面的阐述。首先,本章通过详细阐述当前大模型技术在内容解析领域的背景,指出

了电力行业生命周期评价的重要性,并强调了研究流程和研究方法。在这一基础上,本章进一步明

确了项目系统功能设计。综上所述,本章作为论文的引言部分,为整个研究提供了清晰的研究背

景、目的、意义、内容及方法概述,为后续章节的展开奠定了坚实的基础。

2.1 大语言模型

chatGpt 是由 openAI 发布的一种大语言模型,能够以问答的形式完成各类任务,包括接受文

字输入,理解自然语言,理解响应并模拟人类对话形式进行输出。再各个自然语言处理子任务具有

优异的表现。相比其他大语言模型拥有更丰富的知识,涵盖自然、社会科学、人文历史等多个领

域。chatGpt 在 Gpt3.5 的基础上引入了 RLhF(reinforcement learning from human feedback)

技术,通过将人类的日常对话的语言习惯嵌入模型,并引入价值偏好,使得模型的输出满足人类的

意图。微调过程分为预训练、监督微调、设计奖励模型和反馈优化。桑基韬等人根据 chatGpt 的对

话对象和定位将其应用分为四个层次:数据生成器、知识挖掘器、模型调度器和人机交互界面。在

多模态领域,Visual chatGpt、mm-ReAct 和 huggingGpt 让视觉模型与 chatGpt 协同工作来完成视

觉和语音任务。

除此以外,许多类 chatGpt 的大模型也同样在自然语言处理方面展示出来了较好的效果。

LLamA 是应该从 7billion 到 65billion 参数的语言模型,不需要求助于专有的数据集。清华大学

提出了一种基于自回归填充的通用语言模型 GLm 在整体基于 transformer 的基础上作出改动,在一

些任务的表现上优于 Gpt3-175b。

大语言模型,例如 Gpt 系列、LLama 系列、Gemini 系列等,在自然语言处理方面取得了显着的

成功,展示了超强的性能,但仍面临诸如幻觉、过时的知识、不可追溯的推理过程等挑战。2020

年,由 Lewis 等人引入的检索增强生成方法,通过整合来自外部数据库的知识,然后再继续回答问

题或生成文本。这个过程不仅为后续阶段提供信息,而且确保响应是基于检测到的证据的,从而显

着提高输出的准确性和相关性。在推理阶段从外部知识库动态检索信息使 RAG 能够解决诸如生成幻

觉等问题。RAG 与 LLm 的集成得到了迅速的应用,提高了自然语言处理任务的性能,并且使得模型

能够更好地利用外部知识和背景信息。

自 2020 年起,全球大语言模型在自然语言处理、计算机视觉、语音识别、推荐系统等领域表

现出卓越技术优势,市场规模持续增长,预计到 2028 年将达到 1095 亿美元。国外大模型产品研发

在 2021 年进入高速发展期,谷歌、openAI、英伟达、微软等公司都推出了自主研发的大模型,截

至 2023 年 7 月底,国外已发布了 138 个大模型。我国大模型发展迅速,与国际前沿保持同步,百

度、腾讯、清华大学、北京航空航天大学等单位都推出了自己的大模型,截至 2023 年七月底,我

国已发布 130 个大模型。

2.2 知识抽取

知识抽取主要分为命名实体识别和关系抽取两方面。命名实体识别(NER)任务,旨在识别与

特定语义实体类型相关联的文本跨度。该任务最早于 1991 年由 Rau 等人提出。随着信息理解、人

工智能等领域的顶级会议对 NER 任务的评测,其定义逐渐细化和完善,并逐渐成为自然语言处理

(NLp)领域的重要组成部分。然而,不同领域对实体类型的定义存在差异,因此 NER 模型的构建

取决于特定领域任务需求,通常涵盖人物信息、地点信息和组织机构信息等。对于英语、法语、西

班牙语等外语文本,通常采用单词作为基本单位,因此基于这些语言的 NER 模型主要关注单词本身

的语义特征和上下文信息。然而,中文语料文本通常由字符构成,需要考虑字符的语义信息和词汇。

特征,同时引入其他表征信息来提升模型性能,如中文分词(cwS)、语义部分标签(poS)等外部

信息,因此构建中文命名实体识别(cNER)模型更为复杂。目前,NER 任务的研究方法主要包括基

于词典和规则的方法、基于机器学习(mL)的方法以及基于深度学习(dL)的方法。

今天为什么讲座要那么长时间。

皮皮读书推荐阅读:误入狼室:老公手下留情!替妹嫁病王爷后,全家跪求我原谅电竞男神不好惹纵情死后睁眼重回婚前,踹渣男嫁军官崩铁,从雅利洛开始的星际军阀女主重生后,每天都想锤人倾世华歌:千古白衣卿全新的穿越到洪荒大陆未开的时候前妻的春天1852铁血中华四合院之我总能置身事外神游悲郁地和顶流亲弟上种田综艺后我爆红了崩坏:身在特摄的逐火之旅旺财命订九命猫妖盛世帝女王爷太妖孽:腹黑世子妃东北那边的怪谈惹不起,国家霸霸都要抱紧她大腿异界之不灭战神棺底重生,神医丑妃战天下人在斩神,身患绝症签到原神七神穿越清朝成为胤禛嫡福晋火烧的燎原星光的新书算命直播抓鬼穿成大佬姐姐的妹妹后放飞自我了四合院:身在民间,心向红星深情总裁追妻记有多少爱可以重来我错了姐姐,再打哭给你看穿越虫族之奇遇我曾爱过你,但不做男主白月光,我做反派掌中雀女将军的病娇公主夫人【魔道同人】我在夷陵养阿婴修真界白月光手握舔狗师姐剧本云中月之残月孤灯霍格沃茨的冒牌巫师枯萎的碎冰蓝横行港诡,从掠夺僵尸开始不服?我老公有嘴,根本没误会!牵着我的你劫与解八零换亲:娇医美人被高冷大少宠上天重生女帝之天尊掌中三寸金莲开局举报继父,病弱女配下乡被宠秦云萧淑妃召唤玩家为我开疆拓土四合院:阎家老二是个挂比游走诸天,全靠暗黑技能多!
皮皮读书搜藏榜:谁家炉鼎师尊被孽徒抱在怀里亲啊开局公司破产,在娱乐圈咸鱼翻身山海探秘之陌途棹渡纤尘山大杂院:人间烟火气小师祖真不浪,她只是想搞钱一剑,破长空你出轨我重生,做你女儿给你送终!穿书后,抢了女主万人迷的属性被雷劈后:我在地球忙着种田穿成养猪女,兽医她乐了小家族的崛起自爆逃债很缺德,我靠讨债攒功德从弃婴到总裁八零军婚:阵亡的糙汉丈夫回来了给你一颗奶糖,很甜哒!原神:我给散兵讲童话影视快穿之宿主她不按套路出牌魔法之勋章穿越女尊,成为美男收割机原神:始源律者的光辉照耀提瓦特中奖一亿后我依旧选择做社畜农女有财被造谣后,丑妃闪婚病弱摄政王平安修行记荒年全国躲旱尸,我有空间我不虚美艳大师姐,和平修仙界困惑人生名剑美人[综武侠]仙界崩坏,落魄神仙下岗再就业妃常不乖:王爷别过来快穿囤货:利已的我杀疯了犯罪直觉:神探少女全职法师炸裂高手【观影体】森鸥外没有出现过超级农场系统死后:偏执王爷他为我殉葬了最强狂婿叶凡秋沐橙臣与陛下平淡如水蓄意撩惹:京圈二爷低头诱宠安老师!你的病弱前男友洗白啦盗墓:她来自古武世界荒野直播:小糊咖被毛绒绒包围了逆水沉舟寻晴记各天涯铁马飞桥新书无敌邪神伏阴【又名:后妈很凶残】古穿今:七零空间福运崽崽
皮皮读书最新小说:我靠网购商城在古代当神女神尊独宠九尾娇妻重生虐爆八荒抗战:调任团长,手下李云龙!前夫在太平间哭疯,我换了身份嫁豪门诡事绘埃及绝恋崩铁:博识尊标记了一个危险人物九霄灵枢:量子修真纪元崩铁观影:太一?阿哈不许复活裴总别虐了,蓝院士要和你离婚了七零,堂妹抢对象?干翻全家分家白眼狼家人全重生,我不管了又哭宝可梦直播:冠军也有二周目神兵天降之打鬼子两眼一睁就是杀,都重生了磨叽啥无职转生:你我都值得相信快穿她又活了一世错撩后,他强制爱吾为人,镇压神明七零错嫁随军,被最强大佬宠上天重生七零嫁军官离婚后,她在豪门做保姆赘婿逆袭:商业神级系统名柯:我的徒弟好像才是气运之子杀手神医废材嫡女的炼丹御兽人生在世哪有不疯,强撑罢了刑侦:他又在凶案现场偷亲我天九:奶包竹马求抱走时砂遗楼全家读心后,炮灰团宠杀疯了!替身小师妹觉醒后,全宗门跪求原谅八零:离婚路上禁欲大佬反悔了拍奶嗝吐心声,暴君爹爹改命啦重生文里的炮灰学渣路人甲师道飞升天幕:狐妖小红娘明明是杰克的我为什么会在柯南啊将门嫡女重生之太子宠上天夫君凯旋纳新欢?男人不忠那就换闺蜜齐穿洞房夜攒够寿命一起死遁我靠清奇脑回路爆火成顶流团宠妹妹旺全家,全球大佬排队宠!萌学园:我靠库洛牌拯救遗憾重生宠妾进阶录之缘起综影视:她不懂情时间胶囊715快穿:万人迷她不做任务一朝穿越成乡下农女轮回录:魔族小妹拐了妖族团宠全网黑学渣竟是国宝级太子妃