皮皮读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!
皮皮读书 >  离语 >   第348章 往前

节点与网络中其他节点的交互都是通过其邻居节点来 进行的,因此节点的邻居越多,意味着该节点能够 向外传递的信息越多,从网络外部接受信息也越容易。 有向网络中,又可以定义出度中心度、入度中心度。

社区发现是根据网络中的边的连接模式,把网络顶点划分为群组。将网络顶点划分为群组后最常见的属性是,同一群组内部的顶点之间紧密连 接,而不同群组之间只有少数边连接。社团发现的目的是就要找到网络内部不同群组之间的自然分割线。简而言之,它是一个把网络自然划分为顶点群组的问题,从而使得群组内有 许多边,而群组之间几乎没有边。然而,“许多”和“几乎没有”到底是多少, 这个问题值得商榷,为此提出了多种不同的定义,从而产生了不同的社团发 现算法8基于层次聚类的算法。

第一阶段:称为modularity optimization,主要是将每个节点划 分到与其邻接的节点所在的社区中,以使得模块度的 值不断变大; 第二阶段:称为munity Aggregation,主要是将第一步划分 出来的社区聚合成为一个点,即根据上一步生成的社 区结构重新构造网络。重复以上的过程,直到网络中 的结构不再改变为止。步骤:1.初始化,将每个点划分在不同的社区中; 2.对每个节点,将每个点尝试划分到与其邻接的点所在的社区中,计算此时 的模块度,判断划分前后的模块度的差值Δq是否为正数,若为正数, 则接受本次的划分,若不为正数,则放弃本次的划分; 3.重复以上的过程,直到不能再增大模块度为止; 4.构造新图,新图中的每个点代表的是步骤3中划出来的每个社区,继续执 行步骤2和步骤3,直到社区的结构不再改变为止。 !在2中计算节点的顺序对模块度的计算是没有影响的,而是对计算时间有影响。

数据缺失的原因数据采集过程可能会造成数据缺失;数据通过网络等渠道进行传输时也可能出现数据丢失或出错,从而造成 数据缺失;在数据整合过程中也可能引入缺失值删除法删除法通过删除包含缺失值的数据,来得到一个完整的数据子集. 数据的 删除既可以从样本的角度进行,也可以从特征的角度进行。 删除特征:当某个特征缺失值较多,且该特征对数据分析的目标影响 不大时, 可以将该特征删除 删除样本:删除存在数据缺失的样本。 该方法适合某些样本有多个特征存在缺失值,且存在缺失值的样本占 整个数据集样本数量的比例不高的情形 缺点:它以减少数据来换取信息的完整,丢失了大量隐藏在这些被删除数据 中的信息;在一些实际场景下数据的采集成本高且缺失值无法避免,删除法可 能会造成大量的资源浪费均值填补计算该特征中非缺失值的平均值(数值型特征)或众数(非数值型特 征),然后使用平均值或众数来代替缺失值缺点一:均值填补法会使得数据过分集中在平均值或众数上,导致特征 的方差被低估 缺点二:由于完全忽略特征之间的相关性,均值填补法会大大弱化特征 之间的相关性随机填补随机填补是在均值填补的基础上加上随机项,通过增加缺失值的随机性 来改善缺失值分布过于集中的缺陷。

等距离散化(Equal-width discretization):将数据划分为等宽间隔的区间,这种方法需要先确定区间的个数n,再根据最小值min和最大值max计算出每个区间的间隔长度(max-min)\/n,相邻两个区间的宽度都是相同的。等频率离散化(Equal-Frequency discretization):将数据划分为相同的数量级别,每个区间包含的记录数相等。这种方法首先将数据按照大小排序,然后将排序后的数据分成n等份,每份个数为数据总数\/n,在每个区间的边界处划分数据。基于聚类的离散化:将数据分成若干个簇,簇内的数据相似度高,簇间数据相似度低。具体实现时可以使用聚类算法如k-means、dbScAN等。自适应离散化:通过迭代的方式,不断根据数据的特性调整区间的边界,以达到最优的离散化效果。下面分别以等距离散化、等频率离散化、基于聚类的离散化和自适应离散化为例子,分别列出具体的例题:等距离散化假设我们有一个包含1000个学生身高数据的数据集,我们想将身高离散化成10个等宽的区间,以下是离散化方法:计算身高的最小值和最大值,假设最小值为140cm,最大值为200cm。计算每个区间的宽度,假设共10个区间,每个区间的宽度为(200-140)\/10 = 6cm。根据每个学生的身高,将其分入相应的区间。等频率离散化假设我们有一个包含200家公司的财务数据的数据集,我们想将每个公司的营业收入离散化成5个等频率的区间,以下是离散化方法:将所有公司的营业收入升序排序。计算每个区间的数据数量,在本例中,因为共有200个公司,所以每个区间包含40个公司。找到每个区间的边界,比如第一个区间的最小值和第二个区间的最大值,这两个值之间的所有公司的营业收入都属于第一个区间。

皮皮读书推荐阅读:误入狼室:老公手下留情!替妹嫁病王爷后,全家跪求我原谅电竞男神不好惹纵情死后睁眼重回婚前,踹渣男嫁军官崩铁,从雅利洛开始的星际军阀女主重生后,每天都想锤人倾世华歌:千古白衣卿全新的穿越到洪荒大陆未开的时候前妻的春天1852铁血中华四合院之我总能置身事外神游悲郁地和顶流亲弟上种田综艺后我爆红了崩坏:身在特摄的逐火之旅旺财命订九命猫妖盛世帝女王爷太妖孽:腹黑世子妃东北那边的怪谈惹不起,国家霸霸都要抱紧她大腿异界之不灭战神棺底重生,神医丑妃战天下人在斩神,身患绝症签到原神七神穿越清朝成为胤禛嫡福晋火烧的燎原星光的新书算命直播抓鬼穿成大佬姐姐的妹妹后放飞自我了四合院:身在民间,心向红星深情总裁追妻记有多少爱可以重来我错了姐姐,再打哭给你看穿越虫族之奇遇我曾爱过你,但不做男主白月光,我做反派掌中雀女将军的病娇公主夫人【魔道同人】我在夷陵养阿婴修真界白月光手握舔狗师姐剧本云中月之残月孤灯霍格沃茨的冒牌巫师枯萎的碎冰蓝横行港诡,从掠夺僵尸开始不服?我老公有嘴,根本没误会!牵着我的你劫与解八零换亲:娇医美人被高冷大少宠上天重生女帝之天尊掌中三寸金莲开局举报继父,病弱女配下乡被宠秦云萧淑妃召唤玩家为我开疆拓土四合院:阎家老二是个挂比游走诸天,全靠暗黑技能多!
皮皮读书搜藏榜:谁家炉鼎师尊被孽徒抱在怀里亲啊开局公司破产,在娱乐圈咸鱼翻身山海探秘之陌途棹渡纤尘山大杂院:人间烟火气小师祖真不浪,她只是想搞钱一剑,破长空你出轨我重生,做你女儿给你送终!穿书后,抢了女主万人迷的属性被雷劈后:我在地球忙着种田穿成养猪女,兽医她乐了小家族的崛起自爆逃债很缺德,我靠讨债攒功德从弃婴到总裁八零军婚:阵亡的糙汉丈夫回来了给你一颗奶糖,很甜哒!原神:我给散兵讲童话影视快穿之宿主她不按套路出牌魔法之勋章穿越女尊,成为美男收割机原神:始源律者的光辉照耀提瓦特中奖一亿后我依旧选择做社畜农女有财被造谣后,丑妃闪婚病弱摄政王平安修行记荒年全国躲旱尸,我有空间我不虚美艳大师姐,和平修仙界困惑人生名剑美人[综武侠]仙界崩坏,落魄神仙下岗再就业妃常不乖:王爷别过来快穿囤货:利已的我杀疯了犯罪直觉:神探少女全职法师炸裂高手【观影体】森鸥外没有出现过超级农场系统死后:偏执王爷他为我殉葬了最强狂婿叶凡秋沐橙臣与陛下平淡如水蓄意撩惹:京圈二爷低头诱宠安老师!你的病弱前男友洗白啦盗墓:她来自古武世界荒野直播:小糊咖被毛绒绒包围了逆水沉舟寻晴记各天涯铁马飞桥新书无敌邪神伏阴【又名:后妈很凶残】古穿今:七零空间福运崽崽
皮皮读书最新小说:我靠网购商城在古代当神女神尊独宠九尾娇妻重生虐爆八荒抗战:调任团长,手下李云龙!前夫在太平间哭疯,我换了身份嫁豪门诡事绘埃及绝恋崩铁:博识尊标记了一个危险人物九霄灵枢:量子修真纪元崩铁观影:太一?阿哈不许复活裴总别虐了,蓝院士要和你离婚了七零,堂妹抢对象?干翻全家分家白眼狼家人全重生,我不管了又哭宝可梦直播:冠军也有二周目神兵天降之打鬼子两眼一睁就是杀,都重生了磨叽啥无职转生:你我都值得相信快穿她又活了一世错撩后,他强制爱吾为人,镇压神明七零错嫁随军,被最强大佬宠上天重生七零嫁军官离婚后,她在豪门做保姆赘婿逆袭:商业神级系统名柯:我的徒弟好像才是气运之子杀手神医废材嫡女的炼丹御兽人生在世哪有不疯,强撑罢了刑侦:他又在凶案现场偷亲我天九:奶包竹马求抱走时砂遗楼全家读心后,炮灰团宠杀疯了!替身小师妹觉醒后,全宗门跪求原谅八零:离婚路上禁欲大佬反悔了拍奶嗝吐心声,暴君爹爹改命啦重生文里的炮灰学渣路人甲师道飞升天幕:狐妖小红娘明明是杰克的我为什么会在柯南啊将门嫡女重生之太子宠上天夫君凯旋纳新欢?男人不忠那就换闺蜜齐穿洞房夜攒够寿命一起死遁我靠清奇脑回路爆火成顶流团宠妹妹旺全家,全球大佬排队宠!萌学园:我靠库洛牌拯救遗憾重生宠妾进阶录之缘起综影视:她不懂情时间胶囊715快穿:万人迷她不做任务一朝穿越成乡下农女轮回录:魔族小妹拐了妖族团宠全网黑学渣竟是国宝级太子妃