皮皮读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

徐川刚转身走了两步,身后陶哲轩教授的邀请就过来了。

停下脚步,他有些疑惑的看了一眼,问道:“舒尔茨教授的报告会不是在明天上午九点吗?”

他之前看过这次数学交流会的形成安排,对于每一个值得他去听的报告时间都记得清清楚楚,舒尔茨教授的报告是他这次的重点目标之一。

舒尔茨教授和陶哲轩一样,是数学界的新星,不过他的年龄要小一些,今年还不到三十岁。

两人被数学界誉为双子塔,可见他们已经拉开了其他同龄人不小的差距。

“是的,原本是上午十点,但是w.t高尔斯教授临时有事情赶回剑桥了,所以今天下午的报告有一份提前了,这些东西应该发你邮箱了。”陶哲轩笑着解释道。

“哦,原来是这样,那麻烦陶教授了。”徐川点了点头,转身跟上陶哲轩的步伐。

“正好咱可以接着聊聊具分形边界的问题不是吗?”陶哲轩推了推眼镜框,笑着看向徐川。

.......

两人赶到舒尔茨教授所在报告会一号礼堂时,证明报告已经开始了。

找了个座位坐下,徐川望向了舞台上留着齐肩卷发的身影,开始认真的听讲。

这次普林斯顿的数学交流会,彼得·舒尔茨不出意料的讲解是他的最大成果‘类完美空间的数学概念’。

这是他在博士期间创造的一种数学工具,又叫做‘p·s进域-几何理论’。

这项理论让数学家得以借此证明代数几何和其他领域中的许多未解谜题,也将拓扑学、加罗瓦理论和p进数结合到了一起,构成了新的数学。

目前而言,这套理论在数学界很火,在数论领域更是独一无二的宠儿。

一方面是发明者舒尔茨本人利用这套理论对朗兰兹纲领做出来很多重大的突破,这引起了众多数学家的重视。

另一方面,则是p进数是数论领域的核心,比如怀尔斯教授在证明费马大定理的时候,几乎每一步都涉及到了p进数的概念。

而且目前数学界几乎一致认为,几何和代数的大统一的研究就可能在p进数上。

哦,顺带提一下,他之前的研究,weyl-berry猜想也有一部分和p进数有关系。

所以徐川对于舒尔茨教授的这一场报告会很重视,寄希望于从上面得到某些灵感,进而对weyl-berry猜想的谱渐近做出突破。

“徐,我们都知道p进ζ函数是p进l函数的一个例子,它体现了对应数域的解析性质,而coates-wiles和 an在明显互反律的工作表明上述多项式和 ch(e\/c)只是相差一个固定多项式。”

“你说如果选取一个合适的加罗德域作为有限交换群,是否能将代数对象等同于p-进解析对象?”

一旁,正认真坐着听讲的陶哲轩突然凑了过来,小声的询问道。

徐川皱了皱眉,问道:“岩泽理论的主猜想?”

陶哲轩点了点头,道:“嗯,刚刚在听舒尔茨教授讲解他的类似完备空间理论时有些启发,或许值得尝试一下,你怎么看?”

闻言,徐川紧皱起了眉头,思虑了一番后道:“考虑群环 zp[gn]构成的系,由于 gn到 gn?1之间存在自然限制映射,此系也存在射影极限Λ,事实上,Λ同构于以 zp为系数的幂级数环 zp[[t]],它被称做岩泽代数......”

“回到分圆 zp扩张的情形. kn的理想类群是有限交换群,记其 p部分是an.一方面,由于它是p阶群,有zp的作用;而另一方面 kn\/k的加罗瓦群作用在它上面,故 an是环 zp[gn]的有限模.由于 kn+1到 kn有自然的映射,我们可以得到 an+1到 an的自然映射......”

“从ch(a)= ch(e\/c).可以看出, a说明的是数域的理想类群,是一个纯粹的代数对象.而分圆单位本质上是一个解析对象。”

【推荐下,野果阅读追书真的好用,这里下载 .yeguoyuedu 大家去快可以试试吧。】

“从这个角度来看,想要用一个合适的加罗德域作为有限交换群,进而等同代数和p进数恐怕是一件很难的事情。”

闻言,陶哲轩陷入了沉思中,半响后才道:“但域群的有限扩张应该可以解决这个问题,这可以利用舒尔茨教授的类似完备空间理论,这套理论能做到将局部域上的算术问题简化表示为特定的特征及特征域的组合......”

徐川耸了耸肩,道:“抱歉,这方面我就不清楚了,舒尔茨教授的‘p·s进域-几何理论’我并不熟悉,不然今天我也不会坐到这里学习了。”

这方面他的确不熟悉,p·s进域-几何理论是代数与几何方面的东西,而p进数更是纯数论方面的,上辈子他基本没多少了解,刚刚他说的这些东西还是过年之前学些域扩张时了解的一些知识。

听到这话,陶哲轩才勐然惊醒过来:“哦,我差点忘了你今年才上大一,舒尔茨教授的类似完备空间理论对于大学生来说的确有点难懂。”

“不过你的学识真是让我吃惊,没想到除了谱渐近和具分形边界连通区域外,你对在群环和有限域上的理解也这么深刻。”

“你真的是一名还在读本科的大学生吗?或许你在未来可以更多的尝试深入了解一下这方面的内容。”

徐川笑了笑,道:“我正在这么做。”

闻言,陶哲轩感叹道:“看来在不久的将来,我们又将迎来一名数学界的新星。”

顿了顿,陶哲轩又接着道:“徐,不如你来加州大学读博如何?关于岩泽理论的主猜想我这边有一些思路,如果你感兴趣的话,我们可以一起来解决这个问题。”

“关于群域这方面的东西,我需要一个人帮助,你很合适,而且我们交流和愉快不是吗?”

一旁,一名来自阿根廷的数学教授一脸懵逼的看着陶哲轩和徐川。

wtf?

这两人在说什么东东?

很显然,这名数学教授全程听完了两人的聊天。

但遗憾的是,他一个字都没听懂。

嗯,也不能这么说,群域,加罗瓦域,岩泽理论这些关键词他是听懂了的。

可惜前后连起来他就不知道这两人说的是啥了。

他并不认识徐川,但认识陶哲轩教授。

一开始的时候他还以为这是陶教授带的学生,正庆幸自己能坐到大名鼎鼎的陶教授身边,准备在听完舒尔茨教授的报告后好好找陶教授请教一下的。

但随着时间的流逝,两人交流起来的时候他就懵了。

这年轻人,好像不是陶教授的学生的样子。

数学界什么时候新出了一个能这样和陶教授畅所欲言交流的新人?

他没听说过啊。

而且,陶教授亲自邀请过去读博,邀请一起参与岩泽理论的科研项目,这待遇.......

fk,他好羡慕,就像是坐在高高的柠檬山上一样,好酸!

.......。

皮皮读书推荐阅读:神魔空间设计师我与师妹捉鬼的日子快穿女配:深吻男神100次诸天金手指拥有荒古肾体的我,末世无敌了漫游在影视世界我的时空穿梭手机换斗星辰黄泉无客栈末日赘婿带我穿梭平行宇宙的闪电球请叫我超人吧位面之十大空间港综世界完美人生长生王者时空穿梭从梦境开始全球冰封:躲在安全屋里收女神冥婚惊情:鬼王老公请轻宠我有一支星际舰队异能在手天下我有星际回收商惨死重生,全皇朝跪下叫祖宗人在末日当反派,女神说要坏掉了冰封末日,女人缘是真滴好末世之极,创世之初请叫我邪神大人神雕战神末日,绿茶前女友跪求我收留碳变之唯我独法末世幼稚园攻略星际部队:基因解放暗黑大宋什么?有他在蓝星文明就是无敌?系统降临!助我战虫族无尽天机越南1954末世:开局觉醒双神级异能我,机甲设计师末日众神之殇宿主一心搞钱养boss赛博英雄传魔性游戏西幻:我成了神秘生物混沌猎刀窃隋好驸马最后战线丧尸狂潮末世女王:她从末世来快穿之白月光她成了绿茶精灵:完虐主角!你管这叫废物?末世我收留美女上司
皮皮读书搜藏榜:我要当铁匠冰河末世:越折腾活的越久快穿攻略:兽系boss,宠上瘾旧日驭龙全球灾变:只有我有避难所召唤沙雕玩家后,我躺平了末世重生后,疯狂囤物资养狗摆烂别人过末世,在家屯女星我有一个安全屋系统末日降临:百倍爆率刀刀爆物资诡秘三体:我在小镇斩神明地球人实在太凶猛了时空管理员的幸福生活寻戏三国创造沙盘世界我的命运改变器末世:美女们想吃饱吗?尸路传说末世:从宿舍开始逃亡末世坠机王全民逃荒,我的物品能合成惊!重生后竟然成为罗德岛博士!学了三年道术,转专业还来得及吗异兽世界横行录星际工业时代霸宇战星超能文明之古神觉醒血竞天择无限身份的副本世界快穿之我为女主打辅助我是实验动物饲养员刘厚星际宠婚:玄学拯救星际星际破烂女王快穿之美人倾国倾城术仕打爆丧尸王后,我躺平了文人逆袭量子帝国琥珀冰凋零末世:兵王重生带团登巅峰心影幻彩的新书我在漫威世界捡空投唐朝败家子开挂大佬在生存游戏装萌新末日畸变:开局活吞眼镜王蛇星河余烬末世之灭世之龙末世生存,被我玩成了恋爱养成梦魇猎手你真的是个系统吗
皮皮读书最新小说:梦境崩溃后我在赛博世界写修真小说星海启元末日降临狂打造安全屋月球时间说明书签到千年,我成了星际帝王末日梦境自救指南开往1949的绿皮火车高武,我能吞噬万物末日十二城星际:什么是破烂,这些都是宝贝公路求生:我开房车带飞反派道渊之上菩提镇诸天暴雨末世,我靠击杀抽奖无敌!白练秋传奇星际逆影一灾年求生:我靠囤货养全村女眷星旅余烬末世:开局获得神级美女佣兵末世来临:仇火荒途与绿州冰封末世,重生后美女物质我都要手握双系统,我在孤岛躺赢了时烬:异兽囚笼混沌幻灵珠:我执斧辟命我的味道我作主特工17,她们都叫我死鬼!故往无已未来:梦想为繁星之彩无序穿行者废土行者:苏末世娇娇挺孕肚,被大佬们团宠荒岛女王成为姐宝后,恶毒雌性赢麻了天狼的使徒末世枭雄:我的系统是禁忌灵飞经:中微子纪元末日签到,我养的少女是终焉女王星际独孤:天才特工的复仇游戏末日:我不吃牛肉,分解星际穿越遭遇远古食人族尸语证词:尸检报告被AI篡改后意识永生:星河之下的灵魂史诗末世:及时行乐懂不懂?喂,你好,宇宙调停员9528马桶人,带着一堆残次品逆袭!末世忠诚系统:从纨绔到最强领主风灾降临,我靠定风珠打造女神国星际兽世,看我如何一人辅万军熵种纪元